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Abstract

In a distributed system using message logging and
checkpointing to provide fault tolerance� there is
always a unique maximum recoverable system state�
regardless of the message logging protocol used� The
proof of this relies on the observation that the set of
system states that have occurred during any single
execution of a system forms a lattice� with the sets
of consistent and recoverable system states as sublat�
tices� The maximum recoverable system state never
decreases� and if all messages are eventually logged�
the domino e�ect cannot occur� This paper presents
a general model for reasoning about recovery in such
a system and� based on this model� an e�cient algo�
rithm for determining the maximum recoverable sys�
tem state at any time� This work uni�es existing ap�
proaches to fault tolerance based on message logging
and checkpointing� and improves on existing methods
for optimistic recovery in distributed systems�

� Introduction

Message logging and checkpointing can be used to
provide an e�ective fault�tolerance mechanism in a
distributed system in which all process communica�
tion is through messages� Each message received by

This work was supported in part by the National Science Foun�

dation under grant DCR�������� and by the O�ce of Naval

Research under grant ONR N���������K�����	

a process is logged on stable storage ���� and each
process is occasionally checkpointed to stable stor�
age� but no coordination is required between the
checkpoints of di�erent processes� Between received
messages� the execution of each process is assumed to
be deterministic�

The protocols used for message logging are typi�
cally pessimistic� With these protocols� each message
is synchronously logged as it is received� either by
blocking the receiver until the message is logged �	� 
��
or by blocking the receiver if it attempts to send a new
message before this received message is logged ����
Recovery based on pessimistic message logging is
straightforward� A failed process is restarted from its
last checkpoint� and all messages originally received
by this process since the checkpoint are replayed to it
from the log in the same order as they were received
before the failure� The process reexecutes based on
these messages to its state at the time of the failure�
Messages sent by the process during recovery are ig�
nored since they are duplicates of those sent before
the failure�

On the other hand� optimistic protocols perform
the message logging asynchronously ���� The receiver
continues to execute normally� and received messages
are logged later� for example by grouping several
messages and writing them to stable storage in a sin�
gle operation� The receiver of a message depends on
the state of the sender� though� If the sender fails
and cannot be recovered for example� because some
message has not been logged�� the receiver becomes
an orphan process� and its state must be rolled back
during recovery to a point before this dependency
was created� If rolling back this process causes other
processes to become orphans� they too must be rolled
back during recovery� The domino e�ect ��� �� is an
uncontrolled propagation of such rollbacks and must
be avoided to guarantee progress in spite of failures�
Recovery based on optimistic message logging must
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�nd the �most recent� combination of process states
that can be recreated� such that none of the process
states is an orphan�

Optimistic message logging protocols appear to
be desirable in systems in which failures are rare
and failure�free performance is of primary concern�
Since optimistic protocols avoid synchronization de�
lays during message logging� performance in the ab�
sence of failures is improved� Although the required
recovery procedure is then more complicated� this
procedure is only required when a failure occurs�

Section � of this paper presents a general model
for reasoning about these recovery methods in dis�
tributed systems� With this model� we show that
there is always a unique maximumrecoverable system
state� which never decreases� and that if all messages
received are eventually logged� the domino e�ect can�
not occur� Based on this model� Section � describes
and proves the correctness of our algorithm for deter�
mining the maximum recoverable system state at any
time� The algorithm requires no additional messages
in the system� and supports recovery from any num�
ber of concurrent failures� including a total failure�
Our model and algorithm make no assumption of
the message logging protocol used� they support both
pessimistic and optimistic logging protocols� although
pessimistic protocols do not require their full general�
ity� Section � then relates this work to existing fault�
tolerance methods published in the literature and dis�
cusses the e�ect of di�erent message logging proto�
cols on our model and algorithm� Finally� Section �
summarizes the contributions of this work and draws
some conclusions�

� The Model

��� Process States

Each time a process receives an input message� it be�
gins a new state interval� a deterministic sequence of
execution based only on the state of the process at
the time that the message is received and on the con�
tents of the message itself� Within each process� each
state interval is identi�ed by a unique sequential state
interval index� which is simply a count of the number
of input messages that the process has received�

All dependencies of a process i on some process
j can be encoded simply as the maximum index of
any state interval of process j on which process i de�
pends� This encoding is possible since the execution
of a process within each state interval is deterministic
and since any state interval in a process naturally also
depends on all previous intervals of the same process�

All dependencies of any process i can� therefore�
be represented by a dependency vector

di � h��i � h��� ��� ��� � � � � �ni �

where n is the total number of processes in the sys�
tem� Component j of process i�s dependency vector�
�j � gives the maximum index of any state interval
of process j on which process i currently depends�
Component i of process i�s own dependency vector
is always set to the index of process i�s current state
interval� If process i has no dependency on any state
interval of some process j� then �j is set to �� which
is less than all possible state interval indices�

Processes cooperate to maintain their current de�
pendency vectors by tagging all messages sent with
their current state interval index and by remembering
in each process the maximum index in any message
received from each other process� During any single
execution of the system� the dependency vector for
any process is uniquely determined by the state in�
terval index of the process� No component of the de�
pendency vector of any process can decrease through
normal execution of the process�

��� System States

The state of the system is the composition of the
states of all component processes of the system and
may be represented by an n � n dependency matrix�
Taking the dependency vector� di� of each process i

in the system� the dependency matrix

D � ��� �� �

�
�������

��� �� � �� � � � � ��n

��� �� � �� � � � � ��n

��� �� � �� � � � � ��n
���

���
���

� � �
���

�n� �n � �n � � � � �nn

�
�������

can be formed� where row i� �i j� 	 � j � n� is the
dependency vector for process i� Since component i
of process i�s dependency vector is always the index of
process i�s current state interval� the diagonal of the
dependency matrix� �i i� 	 � i � n� shows the current
state interval index of each process in the system�

Let S be the set of all system states that have oc�
curred during any single execution of some system�
The set S forms a partial order called the system

history relation� in which one system state precedes
another if and only if it must have occurred �rst dur�
ing the execution� This relation can be expressed in
terms of the state interval index of each process as
shown in the dependency matrix�
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De�nition � If A � ����� and B � ��� ��
are system states in S� then

A � B �� � i
�
�i i � �i i

�
�

This partial order di�ers from that de�ned by
Lamport�s happened before relation ��� in that it or�
ders the system states that result from events rather
than the events themselves� and that only state inter�
vals started by the receipt of a message� constitute
events�

For example� Figure 	 shows a system of four com�
municating processes� The horizontal lines represent
the execution of each process� each arrow represents
a message from one process to another� and the num�
bers give the index of the state interval started by the
receipt of each message� Consider the two possible
system states A and B� where in state A� message
a has been received but message b has not� and in
state B� message b has been received but message a
has not� These states can be expressed by the depen�
dency matrices

A �

�
���
�� � � �
� � � �
� � � �
� � � ��

�
��� B �

�
���
	� � � �
� � � �
� � � �
� � � 	�

�
��� �

States A and B are incomparable under the system
history relation� which can be seen by comparing the
circled values on the diagonals of these two depen�
dency matrices�

��� The System History Lattice

A system state describes the set of messages that have
been received by each process� Two system states in
S can be combined to form their union such that
each process has received all of the messages that it
has in either of the two original system states� This
can be expressed in terms of the dependency matrices
describing these system states by choosing for each
process the row that has the largest state interval

Process �

Process �

Process �

Process �

time

�

�

�

�

�

� �

�

a

�
b

Figure � The system history partial order

index of the corresponding rows in the original ma�
trices�

De�nition � If A � ����� and B � �����
are system states in S� then the union of A
and B is A �B � ������

� i

�
�i � �

	
�i� if �i i � �i i
�i� otherwise
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Likewise� the intersection of two system states in S
can be formed such that each process has received
only those messages that it has in both of the two
original system states� This can be formed from
the dependency matrices describing these states by
choosing for each process the row that has the small�
est state interval index of the corresponding rows in
the original matrices�

De�nition � If A � ����� and B � �����
are system states in S � then the intersection
of A and B is A 	B � ��� ���

� i

�
�i � �

	
�i� if �i i � �i i
�i � otherwise
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Continuing the example of Section ��� in Figure 	�
the union and intersection of states A and B can be
formed by choosing the proper rows from these two
matrices to get

A �B �

�
���
� � � �
� � � �
� � � �
� � � 	

�
��� A 	B �

�
���
	 � � �
� � � �
� � � �
� � � �

�
��� �

The following theorem introduces the system his�

tory lattice formed by the set of system states that
have occurred during any single execution of some
system� ordered by the system history relation�

Theorem � The set S� ordered by the sys�
tem history relation� forms a lattice� For any
A�B 
 S� the least upper bound of A and
B is A�B� and the greatest lower bound of
A and B is A 	B�

Proof Straightforward from the construction of sys�
tem state union and intersection in De�nitions �
and ��

��� Consistent System States

A system state is consistent if and only if all messages
received by all processes have either already been
sent in the state of the sending process or can de�
terministically be sent by that process in the future�
Since process execution within a state interval is de�
terministic� any message sent before the end of the
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current state interval can deterministically be sent�
but messages sent after this cannot be� Only a con�
sistent system state would be possible to be reached
through normal execution of the system from its ini�
tial state� if an instantaneous snapshot of the entire
system could be observed ����

Any messages shown by the system state to be
sent but not yet received do not cause the system
state to be inconsistent� These messages can be han�
dled by the normal mechanism for reliable message
delivery� if any� used by the underlying system� In
particular� suppose such a message m was received
by some process i after the state of process i was ob�
served to form the system state� and suppose process
i then sent some message n such as an acknowledge�
ment of message m�� which could show this receipt�
If message n has been received in this system state�
the state will be inconsistent because message n not
message m� is shown as having been received but not
yet sent� If message n has not been received yet� no
e�ect of either message can be seen in the system
state� and it is thus still consistent�

If a system state is consistent� then no process
depends on a state interval of the sender greater than
the sender�s current state interval in the dependency
matrix� For each column j of the dependency matrix�
no element in that column may be larger than the
element on the diagonal of the matrix�

De�nition � If D � ��� �� is some system
state in S � D is consistent if and only if

� i� j
�
�i j � �j j

�
�

Let the set C � S be the set of consistent system
states that have occurred during any single execution
of some system� Thus�

C � fD 
 S jD is consistent g �

For example� consider the system of three
processes whose execution is shown in Figure �� The
state of each process here is observed where the curve
crosses the execution line for that process� and the re�
sulting system state is represented by the dependency

Process �

Process �

Process �

time

�

�

�

�

� � � �

�

Figure � An inconsistent system state

matrix

D � ��� �� �

�
� 	 �� �

� �� �
� � 	

�
� �

This system state is not consistent since process 	 has
received a message to begin state interval 	� from
process � that has not been sent yet by process �
and cannot be deterministically sent in the future�
This inconsistency is shown in the dependency matrix
since ��� is greater than �� ��

Lemma � The set C forms a sublattice of
the system history lattice�

Proof It su�ces to show that for any A�B 
 C
A � B 
 C and A 	 B 
 C� Let A � ����� and
B � ��� ���

A �B 
 C�� Let C � ��� �� � A �B� In each
column j of C� either �i j � �j j or �i j � �j j for all i�
since A 
 C and B 
 C� Since �j j � max�j j � �j j��
�i j � �j j for all i as well� Therefore� A �B 
 C�

A 	 B 
 C�� Let D � ��� �� � A 	 B� By
De�nition � and since no element in the dependency
vector for any process ever decreases as the process
executes �i j � min�i j� �i j�� for all i and j� This
implies that �i j � �i j and �i j � �i j � Since A and
B are consistent� �i j � �j j and �i j � �j j � Combin�
ing this with the previous result yields �i j � �j j and
�i j � �j j � This implies that �i j � min�j j � �j j�� and
thus �i j � �j j� for all i and j� Therefore� A	B 
 C�

��� Message Logging and
Checkpointing

A message is called logged if and only if its data and
the index of the state interval that it started in its
receiver process are both recorded on stable storage�
The predicate logged i� �� is true if and only if the
message that started state interval � in process i is
logged�

The predicate checkpoint i� �� is true if and only
if there exists a checkpoint on stable storage that
records the state of process i in state interval
�� When a process is created� it is immediately
checkpointed before it begins execution� and thus�
checkpointi� �� is true for all processes i�

For every state interval � of some process� there
must be some checkpoint on stable storage for that
process with a state interval index no larger than ��
since there is at least always a checkpoint on stable
storage for state interval ��

De�nition � The e�ective checkpoint for
a state interval � of some process i is the
checkpoint on stable storage for process i
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with the largest state interval index � such
that � � ��

A state interval of a process is called stable if and
only if all messages received by the process to start
state intervals after its e�ective checkpoint are logged�
The predicate stablei� �� is true if and only if state
interval � of process i is stable�

De�nition � If � is the state interval in�
dex for some process i� and if � is the state
interval index of the e�ective checkpoint for
state interval � of process i� then state in�
terval � of process i is stable if and only if

� �� �����
�
loggedi� ��

�
�

Any stable state interval � for a process can be
recreated by restoring the process from the e�ective
checkpoint with state interval index �� and replay�
ing to it in order any logged messages to begin state
intervals ��	 through ��

The checkpoint of a process includes the com�
plete current dependency vector for the process� Each
logged message� though� only gives the single depen�
dency created in the receiver by this message� The
complete dependency vector for any stable state in�
terval of some process is always known� though� since
all messages that started state intervals since the ef�
fective checkpoint must be logged�

��� Recoverable System States

A system state is called recoverable if and only if all
component process states are stable and the resulting
system state is consistent� To recover the state of the
system� it must be possible to recover the states of the
component processes� and for this system state to be
meaningful� it must be possible to have reached this
state through normal execution of the system from
its initial state�

De�nition � If D � ��� �� is some system
state in S � D is recoverable if and only if

D 
 C � � i
�
stablei� �i i�

�
�

Let the set R � S be the set of recoverable system
states that have occurred during any single execution
of some system� Thus�

R � fD 
 S jD is recoverable g �

Since only consistent system states can be recover�
able� R � C � S�

Lemma � The set R forms a sublattice of
the system history lattice�

Proof For any A�B 
 R� A�B 
 C and A	B 
 C�
by Lemma 	� Since the state of each process inA and
B is stable� all process states in A�B and A	B are
stable as well� Thus� A�B 
 R and A	B 
 R� and
R forms a sublattice�

��� The Current Recovery State

In recovering after a failure� we wish to restore the
state of the system to the �most recent� recoverable
state that is possible from the information available�
in order to minimize the amount of reexecution nec�
essary to complete the recovery� The system history
lattice corresponds to this notion of time� and the fol�
lowing theorem establishes the existence of a single

maximum recoverable state under this ordering�

Theorem � There is always a unique
maximum recoverable system state in S �

Proof R � S� and by Lemma �� A�B 
 R for any
A�B 
 R� Since A � A � B and B � A � B� the
unique maximum in S is simply

S
D�R

D �

which must be unique since R forms a sublattice of
the system history lattice�

The maximum recoverable system state at any
time is called its current recovery state� The following
lemma shows that the current recovery state of the
system never decreases�

Lemma � If the current recovery state
of the system is R � ��� ��� then� for each
process i� the system can always be recov�
ered without needing to roll back any state
interval � � �i i�

Proof R will always remain consistent� and for each
process i� state interval �i i will always remain stable�
Since R forms a sublattice� any new current recovery
state established after R must be greater than R in
the lattice� By De�nition 	� this implies that the state
interval index for each process in any new current
recovery state must be greater than or equal to �i i�
Therefore� for each process i� no state interval � � �i i
will ever need to be rolled back�

Corollary � If all messages received by
executing processes are eventually logged�
there is no possibility of the domino e�ect
in the system�

Proof If all messages are eventually logged� all state
intervals of all processes eventually become stable by
De�nition 
� and thus new recoverable states must
become possible through De�nition �� By Lemma ��
these states will never need to be rolled back�
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��� Committing Output

If some state interval of a process must be rolled
back to recover a consistent system state� any out�
put messages sent while that state interval is being
reexecuted after recovery may not be the same as
those originally sent� Any processes that received
such messages will be orphans and must also be rolled
back to a point before these messages were received�

However� messages sent to the outside world� such
as those to the user�s display terminal� cannot be
treated in the same way� Since the outside world
generally cannot be rolled back� any messages sent to
the outside world must be delayed until it is known
that the state interval from which they were sent will
never need to be rolled back� at which time they may
be committed by releasing them� This theorem estab�
lishes when it is safe to commit an output message
sent to the outside world�

Corollary � If the current recovery state
of the system isR � ��� ��� then any message
sent by a process i from a state � � �i i may
be committed�

Proof Follows directly from Lemma ��

��	 Garbage Collection

While the system is operating� checkpoints and
logged messages accumulate on stable storage in case
they are needed for some future recovery� This data
may be removed from stable storage whenever doing
so will not interfere with the ability of the system to
recover as needed� The following two theorems estab�
lish when this can safely be done�

Corollary � Let R � ��� �� be the cur�
rent recovery state� For each process i� if
�i is the state interval index of the e�ective
checkpoint for its state interval �i i� then any
checkpoint for process i with state interval
index � � �i may be released from stable
storage�

Proof Follows directly from Lemma ��

Corollary � Let R � ��� �� be the cur�
rent recovery state� For each process i� if
�i is the state interval index of the e�ec�
tive checkpoint for its state interval �i i� then
any message that begins a state interval in
process i with index � � �i may be released
from stable storage�

Proof Follows directly from Lemma ��

� Recovery State Algorithm

��� Introduction

As the system executes� new logged messages and
checkpoints arrive on stable storage� Occasionally�
some combination of this information may de�ne a
new current recovery state by creating a new recov�
erable system state greater than the existing current
recovery state� Theorem � of Section � established
that there is always a unique maximum recoverable
state at any time� Conceptually� this state may be
found by an exhaustive search of all combinations of
stable process state intervals until the maximumcom�
bination is found� However� such a search would be
too expensive in practice� and an e�ective means of
limiting this search space is important�

The recovery state algorithm monitors check�
points and logged messages as they arrive on stable
storage and decides if each allows an advance in the
current recovery state of the system� The algorithm
is invoked each time a process state interval becomes
stable� it is incremental in that it only examines in�
formation that has changed since its last execution�
rather than recomputing the entire current recovery
state on each execution� Since it only uses informa�
tion on stable storage� it can handle any number of
concurrent process failures�

��� The Basic Algorithm

Each time some new state interval � of some process k
becomes stable� the algorithmattempts to form a new
current recovery state in which the state of process k
is advanced to state interval �� It does so by includ�
ing any state intervals from other processes that are
necessary to make this new system state consistent�
The check for consistency is performed by a direct
application of the de�nition of system state consis�
tency from Section �� The algorithm succeeds if all
such state intervals included are stable� making this
new consistent system state composed entirely of sta�
ble process state intervals� Otherwise� no new current
recovery state is possible�

An outline of the basic recovery state algorithm
is shown below� Some details are omitted from this
outline for clarity� these will be discussed later after
the basic algorithm is described� Let R � ��� �� be
the current recovery state of the system� When state
interval � of process k becomes stable� the following
steps are taken by the algorithm�

	� If � � �k k� then exit the algorithm� since the
current recovery state is already in advance of
state interval � of process k�
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�� Make a new dependency matrix D � ��� �� from
R� with row k replaced by the dependency vector
for state interval � of process k�

�� Loop on step � while D is not consistent� That
is� loop while there exists some i and j for which
�i j 	 �j j � which shows that some process i de�
pends on a state interval of process j greater than
process j�s current state interval in D�
Find a stable state interval � � �i j of process j�
If state interval �i j is stable� let � be �i j � other�
wise� choose some later state interval of process
j for �� if one exists�

a� If no such state interval exists for � that is
stable� exit the algorithm� but remember to
recheck this later�

b� Otherwise� replace row j of D with the
dependency vector for state interval � of
process j�

�� The dependency matrixD is now consistent and
composed only of stable process state intervals�
It is thus recoverable� Replace R with this new
system state D� making it the new current re�
covery state�

��� Some Details

Lemma � The state interval � chosen for
process j during each iteration in step �
must be the minimum� � �i j that is stable�

Proof As a process executes� no element of its de�
pendency vector can decrease� Thus� the dependen�
cies of any state interval of process j after this min�
imum � will be at least as large as those of state
interval �� Clearly� if state interval �i j is stable� its
dependencies will be exactly only those that are nec�
essary� any later state interval of process j may have
additional dependencies that state interval �i j does
not have� Using the minimum set of dependencies
possible with the stable process states that are avail�
able will restrict the solutions the least�

Lemma � The comparisons in step � to
check if D is a consistent system state may
be made in any order without a�ecting the
�nal resulting dependency matrix�

Proof Since the only change made to D during the
loop of step � is the replacement of row j with the
dependency vector for state interval �� the only e�ect
that the order of these comparisons has is the order
in which these row replacements are performed�

First� each replacement of row j can only increase
�j j� since row j is only replaced when �i j 	 �j j � and
the new dependency vector for that row is always
chosen such that its state interval � � �i j 	 �j j �

Second� any row replacements required by the re�
placement of some row j will still be required after
the replacement of row j�� j� � j� unless row j also
required the replacement of row j�� and the state in�
terval index of the new row j� is greater than that re�
quired by row j� in which case this new row j� would
still be required if row j�s requirement had been met
�rst�

Thus� the dependency vector left in each row ofD
when the algorithm terminates will always have the
maximum state interval index of any vector placed in
that row during the loop of step �� regardless of the
order that the row replacements are made�

Lemma � When state interval � of
process k becomes stable� the basic algo�
rithm �nds some recoverable system state
D � ��� �� with �k k � �� if any such system
state exists�

Proof Any system state found must be recoverable
since only stable process state intervals are included
by the algorithm� and the resulting system state is
checked for consistency� As each row ofD is replaced�
the dependencies that must be satis�ed grow as little
as possible with the stable process states that are
available� as shown in Lemma �� Since the state in�
terval for any process used in D never decreases as
the algorithm executes� the state interval for process
k in any recoverable state found will never be less
than �� If the algorithm �nds that it needs any state
interval of process k greater than �� no recoverable
state is possible� since the fact that state interval �
of process k is now stable has no e�ect on such a
system state� and any such recoverable state that ex�
ists would have already been found by some earlier
execution of the algorithm

Lemma � No stable process state inter�
val that was deferred in step �a needs to be
rechecked until step � advances the current
recovery state�

Proof Suppose some state interval � of process k

becomes stable and the algorithm determines that no
new recoverable state is possible� By Lemma 
� this
means that no consistent set of stable process state
intervals A � ����� is available with �kk � ��

Now suppose some new state interval �� of process
k� becomes stable� If the algorithm determines that
no new recoverable state is possible� there is no con�
sistent set of stable process state intervals B � ��� ��
available with �k� k� � ��� The only e�ect that this
new state interval �� of process k� can have on the ear�
lier evaluation of state interval � of process k is that
some recoverable state may now be possible with the
state interval index of process k� set to ��� but the
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algorithm has already determined that no such re�
coverable state is possible� Thus� there is no need to
recheck any earlier deferred stable process states in
this case�

This lemma shows when it is necessary to recheck
any deferred stable state intervals� It also gives a
method to greatly limit the set of those deferred sta�
ble state intervals that need to be rechecked� rather
than rechecking all such state intervals that are not
yet included in the current recovery state�

Corollary � When the current recovery
state advances from R � ����� to some new
state R� � ���� ��� the stable process states
that were deferred earlier by step �a and
should now be rechecked are those with a
direct dependency on some state interval �
of any process i such that �i i � � � ��i i�

Proof The proof follows directly from the proof of
Lemma ��

��� Correctness

Theorem � The recovery state algorithm
always �nds the current recovery state of the
system�

Proof First� by Lemma 
� the algorithm only �nds
recoverable system states� Also� any such system
states found will be greater than the previous current
recovery state since at least the new state interval
� for process k is always greater than the previous
state interval index for process k in the current re�
covery state� Lemma 
 also shows that if some new
recoverable state can be formed when state interval �
of process k becomes stable� the algorithm �nds one�
Lemma � shows when it is necessary to recheck any
process state interval that could not be added to a
new current recoverable state when it became stable�
and Corollary � shows which state intervals should be
rechecked then� By rechecking all those state inter�
vals at the correct times� the maximum recoverable
state must be found�

��� An E
cient Procedure

The algorithm described in Sections ��� and ��� can
be implemented e�ciently by making some observa�
tions about the execution of the algorithm� based on
Lemma ��

When step � examines the dependency matrix D
on each iteration� there may be many pairs of i and
j for which �i j 	 �j j � indicating that several di�er�
ent rows of the matrix need to be replaced� These
required row replacements can be entered into a list
of pending replacements as each is discovered� Since

initially only row k of D has been changed from the
current recovery state� and since on each iteration�
only one row is replaced at a time� only the single
changed row needs to be compared against the diag�
onal elements of D for consistency� Then� only the
diagonal elements of the matrix are needed during the
execution of the algorithm� The list of pending row
replacements only needs to remember the maximum
index of any state interval needed for each process�
since the dependency vector that the algorithm leaves
in each row of D is the one for that process with the
maximum state interval index� regardless of the order
that the replacements are performed�

The function FIND RV� shown in Figure �� is a
procedure to to implement steps 	 through � of the
basic algorithm� taking advantage of these observa�
tions� This procedure �nds a new recoverable state
based on state interval � of process k� if such a state
exists� The list of pending row replacements is main�
tained in NEED� such that NEED �i� is always the
maximum index of any state interval in process i that
is currently needed to replace row i of the matrix� If
no row replacements are currently needed for some
process j� then NEED �j� is set to �� A vector� RV�
is used instead of the full dependency matrix� where
RV �i� is diagonal element i of the corresponding de�
pendency matrix� which is also the state interval in�
dex of process i in the recoverable state� As each row
is replaced� only the corresponding single element of
RV is changed�

function FIND RV RV � k� ��
if � � RV �k� then return true�
for i� 	 to n do NEED �i����
RV �k�� ��
for i� 	 to n do

if DV �
k �i� 	 RV �i� then NEED �i�� DV �

k �i��
while � i such that NEED �i� � � do

�� minimum such that
� � NEED �i� and stablei� ���

if no such � then return false�
RV �i�� ��
NEED �i����
for j � 	 to n do

if DV �
i �j� 	 RV �j� then

NEED �j�� maxNEED �j��DV �
i �j���

return true�

Figure � Finding a new recoverable state
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Using function FIND RV� the full recovery state
algorithm can now be stated� This algorithm� shown
in Figure �� initially calls FIND RV on the state in�
terval that just became stable� If no new recoverable
state is found� the algorithm exits since no change in
the current recovery state is possible from this new
stable state� If FIND RV returns success� the result
becomes the new current recovery state� and the al�
gorithm checks if any other recoverable states greater
than this result can now exist� The sets DEFER

�
j

keep track of those deferred stable process state in�
tervals that should be rechecked when the current re�
covery state advances over state interval � of process
j� The setWORK keeps a list of those deferred states
that are to be rechecked by the algorithm because the
current recovery state has been advanced�

� Related Work

A number of fault�tolerance recovery methods based
on message logging and checkpointing have been pub�
lished in the literature� This includes ones using pes�
simistic logging protocols such as Auros �	�� Publish�
ing �
�� and sender�based message logging ���� as well
as optimistic methods ���� The model and recovery
state algorithm presented in Sections � and � can be
applied to each of these and used to reason about
their correctness�

WORK � f k� �� g�
whileWORK � � do

remove some state x� 
� from WORK �
if 
 	 CRS �x� then
for j � 	 to n do

NEWCRS �j�� CRS �j��
if FIND RV NEWCRS � x� 
� � true

then

for j � 	 to n do

for � � CRS �j� � 	 to NEWCRS �j� do

WORK �WORK �DEFER
�
j �

DEFER
�
j � ��

CRS �j�� NEWCRS �j��
else

for j � 	 to n do

� � DV �
x�j��

if � 	 CRS �j� then

DEFER
�
j � DEFER

�
j � f x� 
� g�

Figure � The recovery state algorithm

Our model is more general than is required by
recovery methods based on pessimistic message log�
ging� but the de�nitions of consistency� stability� and
recoverability still apply� and the recovery state al�
gorithm still computes the correct current recovery
state� In this case� the current recovery state is iden�
tical to the state of the system at the time the fail�
ure occurred� since orphan processes are not possible�
Since message logging is synchronous� however� a sim�
pler recovery state algorithm is possible that takes
advantage of the order that information arrives on
stable storage� In particular� checkpoints never add
new information for the algorithm� since messages are
always logged in ascending order by the index of the
state interval that they start in their receivers� and
all messages received before a checkpoint have already
been logged before the checkpoint can be recorded�

Recovery based on optimistic logging protocols re�
quires the full generality of our model� however� Since
orphan processes are possible when using optimistic
logging� recovery from a failure is more di�cult� Any
orphan processes must be rolled back during recovery
to achieve a consistent state� Since there is no syn�
chronization between message logging� checkpointing�
and computation� information for the recovery state
algorithm may arrive on stable storage at any time
and in any order� Thus� the algorithm must be able
to make use of all this information in order to advance
the current recovery state to its maximum possible
value at all times�

Our model and algorithm di�er in several ways
from those used for optimistic recovery by Strom
and Yemini ���� First� Strom and Yemini require
reliable delivery of messages between processes� As
a result� their de�nition of consistency di�ers from
ours by requiring all messages sent to have been re�
ceived� Our model does not require reliable deliv�
ery� but it can be incorporated easily by inserting
a return acknowledgement message immediately fol�
lowing each message receipt� with our de�nition of
consistency remaining unchanged� Second� although
their system checkpoints processes in order to shorten
recovery times and release old logged messages from
stable storage� they do not take advantage of these
checkpoints in computing the current maximum re�
coverable state in their system� Our algorithm uses
both checkpoints and logged messages to compute the
maximum recoverable state and thus may �nd recov�
erable states that their algorithm does not� Finally�
our algorithm requires only the current state inter�
val index of the sending process to be carried in each
message� and requires only a vector of direct depen�
dencies to be maintained by each process� In contrast�
their method requires each process to maintain a vec�
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tor of its transitive dependencies� and requires each
message to be tagged with this vector� which has size
linear in the number of processes� This added com�
plexity does allow control of recovery in their system
to be more decentralized than in ours�

� Conclusion

From a performance standpoint� optimistic message
logging protocols appear to be desirable� They seem
to constitute the right performance tradeo� in operat�
ing environments where failures are rare and failure�
free performance is of primary concern� The recov�
ery state algorithm of Section � represents an im�
provement on earlier work with recovery based on
optimistic message logging by Strom and Yemini ����
Although their algorithm eventually achieves a recov�
erable state� this state may not be optimal� Further�
more� their methods require reliable communication
and seem more complex than the method presented
here�

This work uni�es existing approaches to fault tol�
erance based on message logging and checkpointing
published in the literature� including those using pes�
simistic message logging methods �	� 
� �� and those
using optimistic methods ���� By using this model
to reason about these types of fault�tolerance recov�
ery methods� properties that are independent of the
message logging protocol used can be deduced and
proven� We have shown that there is always a unique
maximum recoverable system state� which never de�
creases� and that in a system where all messages re�
ceived are eventually logged� the domino e�ect cannot
occur� The use of this general model allows more
attention to be paid instead to designing e�cient
message logging protocols�
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